Patterns as Objectives for Level Generation

Steve Dahlskog
_Malmo University
Ostra Varvsgatan 11a

205 06 Malmo, Sweden
steve.dahlskog@mah.se

ABSTRACT

This paper discusses how to use design patterns in procedu-
ral level generation, with particular reference to the classic
console game Super Mario Bros. In a previous paper, we an-
alyzed the levels in this game to find a set of recurring level
design patterns, and discussed an implementation where lev-
els were produced from concatenation of these patterns. In
this paper, we instead propose using patterns as design ob-
jectives. An implementation of this based on evolutionary
computation is presented. In this implementation, levels are
represented as a set of vertical slices from the original game,
and the fitness function count the number of patterns found.
Qualitative analysis of generated levels is performed in order
to identify strengths and challenges of this method.

Keywords

Game Design Patterns, Procedural Content Generation, Su-
per Mario Bros., Genetic Algorithms

1. INTRODUCTION

This paper tries to combine design patterns and proce-
dural content generation (PCG) in the domain of level de-
sign and is aimed toward the 2-dimensional platformer game
genre and especially the classic game of Super Mario Bros.
(SMB) [27]. Out approach is based on a previous article
where we analyzed SMB-levels to find 23 different reoccur-
ring patterns of 5 “families”; Enemies, Gaps, Valleys, Mul-
tiple paths and Stairs. In that paper, we also used the sug-
gested level patterns to implement a level generator that
concatenated these patterns with some variation in height,
length or difficulty. In this paper we consider a different
take on the relationship between patterns and PCG, seeing
patterns not as building blocks but as objectives. This in-
verts the relation between pattern generation and detection,
and conceptually separates building blocks from design ob-
jectives. In order to increase the variation of the content
but still incorporate the suggested level design patterns of
SMB we implemented a prototype based on evolutionary

Julian Togelius
IT University of Copenhagen
Rued Langgaards Vej 7
2300 Copenhagen, Denmark

julian@togelius.com

computation. In this implementation the representation of
level content is made by taking recurring pieces from SMB.
These pieces are just one tile wide and thus we will refer
to them as wvertical slices. By chopping up Mario levels into
finer elements in this way, we can considerably increase the
variety of generated levels while still only using existing ma-
terial. The fitness function for the evolutionary algorithm
counts the number of patterns found in the candidate lev-
els. This approach allows us to create levels that resemble
the original Super Mario Bros levels both on a micro level,
by using existing vertical slices, and on a macro level, by
incorporating the same design patterns.

2. BACKGROUND

In this section we intend to clarify where our approach
is grounded by shortly review patterns, design patterns in
games and automatic generation of game content as well as
what game content in games may be.

2.1 Design patterns

During the seventies, Alexander et al. developed a lan-
guage of patterns for architectural use with the goal to allow
others to express design abilities. “Each pattern describes
a problem which occurs [...] in our environment, and then
describes the core solution to that problem...” [4]. The ad-
vantage of the pattern idea is the allow a designer to use a
general pattern to solve reoccurring problems. This idea has
gradually spread to other areas. In object oriented software
development Gamma et al. have defined a set of templates
for solving general design and programming problems [16].

2.1.1 Design patterns and games

Design Patterns in digital games (DPG) can be used for
different activities ranging from scholastic approaches to prac-
tical development of (digital) games. Suggested use range
from creative aid in design activities where DPG can support
knowledge transfer between designers while they generate,
communicate and modifiy design ideas and concepts. DPGs
can also be used as an analytical tool as well as a learn-
ing tool for scholars in both game analysis and game design
activities. The design patterns may be used as a tool to
understand player behavior during play-testing.

Bjork and Holopainen have extensively documented de-
sign patterns for game design [7, 6]. Design patterns have
also been explored in a variety of aspects, ranging from
pattern-related design in relation to game mechanics [2] to
specific game contexts, like old-school action games [9],
RPGs [30], FPSs [18] and social network game applications

in the style of “’Ville” games [22].

2.2 Game content and game development

Digital games can be seen as the union of two types of
digital artifacts: game content and a game engines. The
game engine’s purpose is to handle user input, to control
Al-agents and to present the game content to the user. Typ-
ically the game content consists of polygon meshes, tex-
ture maps, level geometry, non-player characters, player-
characters, missions, quests, items, etc.

2.2.1 Costdrivers

Digital games have become more expensive to develop [33,
20], at least for the average commercial project. The driver
of costs is primarily that the advancement of the techni-
cal platform that runs the digital game (hardware and game
engine) requires more labour to be spent in content develop-
ment. Customers expect more media and with higher qual-
ity [15] which in turn demands more of the engine that uses
this media which therefore inherently becomes more com-
plex and may even drive the cost to develop and maintain
further.

2.2.2 Game development and PCG

Procedural content generation (PCGQ) is the process of au-
tomatically or semi-automatically generating game content.
Game developers used PCG successfully to generate game
content for different purposes. Examples range from sav-
ing developer time with the game Darwinia [19], or saving
money as for Just Cause [5], exploring possible game con-
tent as with The Sentinel [14], to have variation and creating
unique game content as with Minecraft [25] and to saving
main memory as in Elite [1, 34].

Lately PCG have spurred interest from researchers and
several aspects have been explored as a result. Examples
vary from search-based methods to find maps for RTS
games [37], levels for platform games [23], and answer set
programming for generating mazes [29].

PCG could be used in game design and game develop-
ment in several different ways, depending on whether the
algorithm is seen as a tool, an expert, a designer in its own
right etc [21].

There are a couple of approaches that could combine PCG
and design in fruitful ways. Firstly, we could use PCG for
specific, well defined (and therefore well tested) design tasks,
as for instance in Civilization [24] where it is used to generate
new world maps during run-time (i.e. online) or during
development as to generate a large set of varying game items,
like in Borderlands [17], where PCG were used in several
aspects but put to extensively use for generating a large set
of weapons. Secondly, we could let the PCG process be the
central content provider to the whole title as in Galatic Arms
Race, FTL, Terraria, Minecraft, Dwarf Fortress [13, 35, 28,
25, 3]. A third approach would be to start with handcrafted
content and letting the PCG process emulate or copy the
designers choice with some kind of variation. This approach
can be utilized both for online or offline PCG. The offline
version could be used both during the principal development
of the game title or after release in order to provide more
content to generate more sales of the main title or it could be
used to create add-on packages for players who has finished
the main game.

2.3 Fitting into the pattern

Let us recall what level designers do; “Level designers use
a toolkit or ‘level editor’ to develop new missions, scenar-
ios, or quests for the players. They lay out the components
that appear on the level or map and work closely with the
game designer to make these fit into the overall theme of
the game.” [15]. In order to be able to do this together
with PCG we have previously applied a content analysis
based on a combination of heuristic analysis [12] and rhythm
groups [10, 31] and we suggested a set of level design patterns
for the game Super Mario Bros. (SMB) [27] and presented
a prototype of a level generator® [11]. In the previous pro-
totype, we used parameterized but fairly straight forward
patterns taken from SMB that were randomly picked, mod-
ified for difficulty and placed in sequence to form a level. The
level generator prototype was able to generate SMB levels
with high similarity to the original game but some limits in
the aspect of variation of the content. The only variation
the prototype demonstrated was due to the parameteriza-
tion (different hight, different length, amount of rewards,
amount of risk) of the existing patterns.

For the work-in-progress level generator that we present
in this paper we try to approach the problem of generating
content by using patterns as the objectives for the evolution-
ary method rather than generating pattern building blocks
as we did with a previous prototype. Our motivation to
seeking this approach rather than the reverse is to allow for
a greater “creative freedom” or in computer science terms; a
larger? design space for the PCG-engine than the previous
prototype could.

Our goal is to be able to produce a level generator that
recreates the particular design and look-and-feel of the levels
from the original SMB, while still being novel and offering
new challenges.

2.3.1 Examples of patterns

Due to the limited space in this paper we will only par-
tially include the suggested patterns that we utilize to gen-
erate content (see table 1, figures 1, 2, 4, 5 and [11]).

2.4 Related work

Previous work in the same are as ours is the Tanagra
mixed-initiative level generator [32] founded in analysis of
platform game levels by Smith et al. [31]. Tanagra is an
interactive tool for level designers that utilize a constraint
solver for the creation of level geometry according to a num-
ber of patterns. The patterns are of two types, single-beat
(like “gap pattern” and “spring pattern”) and composite pat-
terns (like “valley” and “mesa”) which are implemented with
some flexibility that can be extended with the aid of the con-
straint solver to fit the the level. Another approach is the
“occupancy-regulated extension” (ORE) [23], that works by
adding bits and pieces of jigsaw-puzzle-like parts from levels
in a compositional way to solve patterns in level generation.

The use of patterns as objectives, e.g. as fitness functions
in search-based PCG similar to ours is the “choke point”
evaluation function while evolving maps for StarCraft [8,
37]. The function assigned a higher fitness to maps that

'Presented at the First Workshop on Design Patterns in
Games, 2012.

2But still more distinct and limited than full randomization
of levels.

Table 1: Examples of patterns for Super Mario Bros.
Enemies

Enemy A single enemy
2-Horde Two enemies together
3-Horde Three enemies together
4-Horde Four enemies together

Roof Enemies underneath a hanging
platform making Mario bounce in
the ceiling

Multiple paths

2-Path A hanging platform allowing Mario
to choose different paths
3-Path 2 hanging platforms allowing Mario

to choose different paths

A multiple path where one path
have a reward and a gap or enemy
making it risky to go for the reward

Risk and Reward

contains choke points and the result of the level generator is
thus likely to have that pattern.

3. MARIO

The original SMB platform game, initially published by
Nintendo in 1985, has been the inspiration for Markus “Notch”
Persson’s public domain Java-based clone which in turn have
been modified for the Mario AT and PCG competitions [36].
In SMB Mario has to traverse 8 worlds with 4 levels each.
The 4th level of each world is a “Boss-fight”-level with dif-
ferent layout than the other levels.

3.1 The original representation

The original game from Nintendo that was released in
1985 (on NES-cartridge) is a bit problematic to analyze and
use as a base for content generation since the implementation
is optimized for space rather than readability. This basically
means that in order to build something within the original
implementation you have to first know the “hex value™ of
the geometry you want to build, in what page (each level
is implemented as a string of pages) you want to place it
and where you want to place it in this page. The first
level in SMB (World 1-Level 1, which we for future ref-
erence purposes will call W1L1) contains 13 pages and ends
a few tiles after the flag pole*. The second piece of geometry
you encounter as a player is (see figure 4) implemented as a
horizontal brick with the length of five with two “Question
mark”-block placed on top in the second and fourth tile (one
containing a mushroom and the other a coin). This form of
representation is effective when representing the horizontal
and vertical block lines (including rows of coins), pipes (dif-
ferent heights), rock-stairs and the castles flagpoles. In fact,
some geometry and enemies have double functions, as in
the underwater setting in W2L2 and W7L2 (which can be
changed to a level on land by manipulating a few hex values).
In this case the vertical underwater vegetation becomes ver-
tical bricks and some Cheep-cheep enemies becomes Bul-
let Bills. The horizontal green blocks becomes land-based

3 A value represented in a positional numeral system with a
base of 16 (where the symbols usually are 0-9 and A-F). A
byte value is conveniently represented as 00-FF instead of
0-255.

“Including the first “empty” screen.

blocks. The representation and optimization for SMB level
geometry may have affected the design of the levels in a
similar way that the limited memory capacity of Atari 2600
affected the design of the games on that platform [26], since
it is more costly in the SMB-representation (in terms of
memory) to draw more objects and the cost of longer sec-
tions are relatively cheap (low or no extra cost compared to
draw a single tile).

4. REPRESENTATION AND GENOTYPE-
TO-PHENOTYPE MAPPING

In this section we present our approach to prototype a
search-based level-generator for SMB. Our intentions were to
apply an evolutionary algorithm that evolves levels contain-
ing the identified patterns. Three different representations
were explored: p0, pl and p2. Since the method we apply
is in the realm of stochastic optimization and metaheuris-
tics the problem of how to represent the genotype (the data
structure that the evolutionary algorithm acts on) and its
relation to the phenotypes (the data structure that is evalu-
ated by the fitness function) was given critical concern [38].

We initially approached the representation problem in the
most direct way, thinking of representing levels as two-dimen-
sional matrices with integer values for each block mapping
directly to the phenotype (p0). This would lead to a very
large search space with only a small region consisting of
playable levels. This idea was therefore quickly discarded.
Next, we considered viewing the geometry of SMB as a
range of integers spanning from 0 (representing a hole in
the ground) to 10 (the maximum height of an obstacle in
SMB). This representation will be referred to as pl.

However this idea was abandoned when we inspected and
compared the levels of the original SMB with our generated
levels and noticed the scarce presence of ground based ob-
stacles. In the original SMB most non-moving obstacles are
combinations of rocks, pipes and land-based or mushroom-
based platforms®. Apart from that, the enemies in SMB
were not present in pl but gave some food for thought for
the next idea of how to represent the genotypes when we
tried to introduce them in this representation. The fact
that a Goomba is placed in a certain piece of elevated geom-
etry suggest an explosion of possibilities concerning a specific
type of the genotype. Simply put; the need to differentiate
between a specific enemy type (11 different ones) and the
height (11 different ones) of a geometry type (12 different
ones) grows towards a search space that is computationally
expensive when we factor in the length of a level and the
size of the population. This computational expensive so-
lution may not pose a practical problem until one decide
on applying this PCG solution in an online® situation with
actual users and tries to generate content on the fly.

Thus, further studies of the original content of SMB (see
section 3) led us to decide on a different approach than in our
previous prototype (see section 2.3) approaching the con-
tent as individual pieces and thus keep with the pattern
approach.

4.1 Vertical slices

5See SMB level W1L3 for an example of land-based plat-
forms and level W4L3 for an example of mushroom-based
platforms.

51.e. during runtime.

Figure 1: A simple 2-Path-pattern instance in SMB
to the left. This can be reproduced with only 2
vertical slices indicated with black frames shown to
the right.

Our current solution (which we refer to as p2) is based
on the idea to approach content from the perspective of
Mario and not the view of the player. In the perspective
of the player we travel from left to right but as Mario we
travel forward one step at the time jumping onto objects
with varying vertical placement. From this perspective the
content of SMB can be viewed as vertical slices that together
with other slices make up our previous suggested patterns.

Level genotypes are represented as strings of length 200
with an alphabet of 24 symbols. Each symbol corresponds
to a vertical slice of Mario level with a length of 1 block and
a height of 13 blocks. Levels (phenotypes) are constructed
by simply appending vertical slices, giving all levels a length
200 blocks. The 24 slices used for the alphabet are repre-
sentative samples from patterns extracted from the original
SMB, mostly from W1L1 and L2.

Initially, we were concerned that since the vertical slices
are not always compatible with each other, we might need
an extra constraint checking function that would be time
consuming to design, implement and complex to maintain
and debug. However, with the Mario-viewpoint and the
more detailed analysis of the content in the original SMB we
concluded that the variation of vertical slices is surprisingly
limited. If we observe figure 1 we have a section of SMB
WI1L1, that can be classified as a simple instance of the “2-
path”-pattern. In our representation this section is simply
a series of vertical slices of two types; the first one is used
three times (in position 1, 2 and 4) and the second one is
used once (in position 3). The two types contains a ground
block at the lowest hight of the level and a brick-block or
a question mark-block at height 4. In order to separate the
instance of the pattern from other instance we also need a
simple piece of ground at height 1.

See figure 3 for an explanation of how slices are appended
to create levels.

4.2 Putting pieces together

In order to explain the vertical slices and how we combine
them into patterns we will use an example with an instance
of the Enemy: 3-Horde-pattern [11] (as in figure 2). The
instance of the pattern could then be described as a sequence

Figure 2: A 3-horde-pattern in the wild (SMB
World 8 Level 1).

¥

Figure 3: Adding vertical slices to form an instance
of the pattern in figure 2.

Figure 4: A 3-Path-pattern.

Figure 5: Another 3-Path-pattern.

of three identical vertical slices. Each of the slices are simple
geometry (in the example; a ground-tile at “ground” level)
with an enemy in a manner portrayed in figure 3.

4.2.1 Example 1

A simple 2-Path-pattern instance in SMB which can be
reproduced with only 2 vertical slices (one slice with a brick-
tile and one slices with a ?-block) see figure 1.

4.2.2 Example 2

By adding a vertical slice with two blocks (a brick-tile and
?-block) and reusing two vertical slices from figure 1 we get
this instance of a 3-Path-pattern in figure 4.

4.2.3 Example 3

By adding a vertical slice with two ?7-blocks and reusing a
vertical slice from figure 1 we get this instance of a 3-Path-
pattern in figure 5.

S. FITNESS FUNCTION

In our implementation (see figure 6) we use a fitness func-
tion to decide which level is the best suited to generate off-
spring and finally be chosen as the level to be played. In
essence we perform a linear search through each member of
the population and assign a fitness value to each member,
the higher the value is (indicated as low, medium, high in

Population }—)\Fitness Function @ > @

Figure 6: Principal execution of the level generator.

Table 2: Patterns supported in the fitness function.

Variation\/

N

Selection

Multiple gaps
Variable gaps

Enemies
Enemy Low
2-Horde Low
3-Horde Low
4-Horde Low
Roof Medium
Gaps
Gaps Low

By stacking
By stacking

Empty valley
Enemy valley

By stacking
By stacking

Gap enemy Low—Medium by stacking
Pillar gap Pillar High
Valleys
Valley Low
Pipe valley Medium

Enemy stair valley
Gap stair valley

Roof valley By stacking
Multiple paths

2-Path Medium-High

3-Path Medium-High

Risk and Reward | By stacking

Stairs

Stair up Low

Stair down Low

Empty stair valley | Low

By stacking
By stacking

table 2), the greater the chance of surviving the next gener-
ation is. The more complex a pattern is to replicate — the
higher the fitness value. Some patterns are only supported
by stacking of beginning and endings of patterns where the
parts add up to a higher value (use “medium-high” as a value
to compare with other values in table 2) except for Gap en-
emy which only need low—medium since it is a rather simple
pattern to replicate with our symbol set.

If a level sequence contains a pattern” (see section 4.2) the
individual population member gets a higher fitness value. If
a level contains a sequence of symbols representing an in-
stance of a pattern, like our example in figure 2, with three
consecutive Goombas it is assigned a positive value. Simi-
larly a sequence of rocks with increasing height is assigned
a value depending on how long the sequence is. The fitness
value assigned is higher if the pattern is uncommon® in a
random sequence. Unplayable sequences are given a high
negative number (but not —oo) allowing breeding with a

"Identified previously [11].
80r rather unlikely to appear.

Figure 7: One-point crossover, where parent 1 (in
red) and parent 2 (in blue) result in mixed-colored
offspring child 1 and 2.

lower chance of survival in order to allow mutation or cross-
over keeping the good part of the genotype for another gen-
eration. Uninteresting sequences are given a low negative
number in order to remove uninteresting parts of levels. We
allow some uninteresting sequences, like a string of simple
ground blocks in order to keep some kind of beat-like® [32]
expression generated from this search-based approach.

The fitness function also contain beginnings and endings
of patterns thus allowing stacking of patterns on top of each
other. A beginning or ending is typically rewarded less than
a full complex sequence. However, if a beginning, a full
pattern and perhaps another beginning or ending is in a
sequence this will give a cumulative higher value and thus
solving the suggested improvement of stacked patterns in
the previous prototype [11].

6. EVOLUTIONARY ALGORITHM

In each evolutionary run, we use 200 levels as representa-
tions of our population and each genotype is initialized as
a uniformly random string of symbols drawn from the 24-
character alphabet of vertical slices. We used a simple p+ A
evolution strategy with u = A = 50 with a combination of
mutation and one-point crossover as genetic operators'®.

Before any evolution operation is performed on the pop-
ulation it is evaluated according to a fitness function (see
section 5). After that the population of 200 members are
ranked according to its fitness value. The top 50 percent
of the population are kept and the weakest 50 percent are
discarded, thus leaving 100 level positions for evolutionary
purposes.

We then let the top 50 percent breed with each other and
so utilizing the “empty” positions in our population. The
breeding is executed as a one-point crossover between pairs
in ranking order, in such way that the best ranked is breed
with the second in ranking, resulting in two new offspring,
and so on. Our implementation of the one-point crossover
has a fixed place for the crossover point in the middle of the
parents’ strings and from this point the strings are simply
swapped with each other. In order to certify that we do not
get stuck in a local maximum of the search-space we apply
a simple mutation operation to the offspring by inject a new
random character from our alphabet in a random position.
Since we have the opportunity to run the level generator in
offline mode our evolutionary search runs for 10.000 gener-
ations in the current version of the implementation.

7. EXAMPLES OF GENERATED LEVELS

9 A rhythmic variation between exciting parts and calm parts
where the player can regain energy to tackle the next excit-
ing section.

9The one-point crossover is illustrated in figure 7.

H Lk L)
ToTE

MR AL

Figure 8: a-level showing tendencies to overfill lev-
els.

HERTONG2! COTH

ORI Y
J-aa-..ﬁ

ITOTES e

Figure 9: (-level showing tendencies to stack pat-
terns.

The evolutionary approach together with vertical slices
result in levels with both patterns, stacking of patterns and
similarity to the original game (compare figure 8, 9, 10, and
11). However, our current implementation does not sup-
port the concept of beats well enough'' where the content
alternate between high-intense and low-intense parts of the
levels. Adding better support to this might solve the ten-
dencies to tightly stack patterns and overfilling game space
as in figure 10 and 11. The reverse version of our approach
a-level (see section 8) in figure 8 is overfilling the game space
but at least our level generator does not do as bad.

8. EVALUATION

In order to get some feedback on our prototype we de-
vised a simple play-test with three different levels generated
from three different stand-points. We refer to the different
levels as a, 8 and . Level a was using a reversed version
of our fitness function that in principle, punished any form
of pattern or beginning or end of a pattern. Level 8 was
generated using our actual fitness function and level v used
a combination of our pattern-based prototype and imitated
original content from SMB. The play-testers consisted of 24
experienced players (23 male, 1 female) in their twenties.
The test platform consisted of ordinary but high-end PC:s
with keyboards as control unit (UI). Our player feedback
was gathered through a simple survey. In order to limit

11 According to some comments by the play-testers. See sec-
tion 8 for more play-test feedback.

Figure 11: 5 almost overfill game space as a does.

bias on previous play-through of other versions three dif-
ferent groups were created with 8 individuals each playing
the levels in different order (Group 1: a, 8, <, Group 2:
B, a, v, Group 3: 7, B, a.). Apart from an open-ended
question regarding the overall experience with the level and
some questions covering general information the play-testers
supplied level-specific information on three questions on a 6-
value scale. The level-specific questions were on; 1) Boring—
Fun, 2) Not similar-Similar (to the original game) and 3)
Easy—Hard (to complete).

The results show a marginal difference between the ap-
proaches our search-based approach (3) seemed to be slightly
more fun than the others, more similar to the original than
a but easier to beat than «y (see table 3).

9. DISCUSSION

Table 3: Results by level.

Version Avr. | Median | Standard

deviation
«a Fun 3.75 4 1.041
« Similar | 4.125 4 1.062
« Hard 3.5 3 0.791
B 3.792 1 1.159
B 1.625 5 0.006
5 2.375 2 0.989
% 3.708 4 0.923
~ 4.833 5 0.875
y 3.292 3 1.006

~
~

e LT
e we— T4 0 ¢ Weew
B3t eee ——— Fip——t—fo—]

E Siibiee e E |

g’ SEEEEEECE S Rl j

2, 1 1 zl Q

0 v: [

P
3
¥
4
¥
4

w

Not Similar: Gamma

~

-

o

Figure 12: Not similar—Similar, Blue = o, Red =
and Green = 7.

Search-based optimization solutions like evolutionary ap-
proaches work well with patterns in regards to variation and
can in our implementation solve the issue of being able to
stack patterns. However, the fine-tuning of the fitness func-
tion may be problematic when introducing new patterns
since the values for rewarding or punish the level can af-
fect previous configuration. We suggest that other content
analysis methods are applied when utilizing building-blocks
smaller than beats or patterns because this can give an ap-
propriate frequency of reward, enemies and geometry.

Since SMB has several levels with distinct look—and—feel
in the different worlds and levels, we intend to implement a
set of fitness functions that allow for generating world and
level specific content. We have planned and prepared the
next phase of the prototyping projects which will include a
frequency analysis of game content in order to fine tune the
fitness functions according to the different worlds and levels
of the original SMB.

10. CONCLUSION

This paper has discussed how patterns can be used in pro-
cedural level generation, and in particular how they can be
used as objectives rather than building blocks to start from.
An implementation of the idea of patterns as objectives for
generating levels for Super Mario Bros was presented. In
this implementation, the original levels of SMB reoccur in
two ways: as the fine-grained “vertical slices” that are recom-
bined in the evolvable level representation, and the higher-
level patterns that serve as objectives. Thus, the evolved
levels retain much of the look and feel of original Mario
levels, yet the generator can output a large range of diverse
levels. An exploratory user study comparing levels that were
generated with different fitness functions gave some indica-
tion that those that were evolved to maximize the number
of patterns appear more similar to the original game than
the others.

11.

1]
2]

[19]
[20]

[21]

REFERENCES

Acornsoft. Elite. [Digital game], 1984.

E. Adams and J. Dormans. Game Mechanics:
Advanced Game Design. Voices That Matter. Pearson
Education, Limited, 2012.

T. Adams. Slaves to Armok: God of Blood Chapter II:
Dwarf Fortress. [Digital game], August 2006.

C. Alexander, S. Ishikawa, and M. Silverstein. A
pattern language — Towns, Buildings, Construction.
Oxford University Press, New York, U.S.A.; 1977.
Avalanche Studios. Just Cause. [Digital game], March
2006.

S. Bjork. Game Design Patterns 2.0. Web page, March
2013.

S. Bjork and J. Holopainen. Patterns in Game Design.
Cengage Learning, 2005.

Blizzard Entertainment. StarCraft. [Digital game],
March 1998.

D. Cermak-Sassenrath. Experiences with design
patterns for oldschool action games. In Proceedings of
The 8th Australasian Conference on Interactive
Entertainment: Playing the System, 1E ’12, pages
14:1-14:9, New York, NY, USA, 2012. ACM.

K. Compton and M. Mateas. Procedural Level Design
for Platform Games. In Proceedings of the 2nd
Artificial Intelligence and Interactive Digital
Entertainment Conference, 2006.

S. Dahlskog and J. Togelius. Patterns and Procedural
Content Generation: Revisiting Mario in World 1
Level 1. In Proceedings of the First Workshop on
Design Patterns in Games, DPG ’12, pages 1:1-1:8,
New York, NY, USA, 2012. ACM.

H. Desurvire, M. Caplan, and J. Toth. Using
Heuristics to Evaluate the Playability of Games. In
CHI 2004 Extended Abstracts on Human Factors in
Computing Systems, April 2004.

Evolutionary Games. Galactic Arms Race. [Digital
game], 2010.

Firebird. The Sentinel. [Digital game], 1986.

T. Fullerton. Game Design Workshop - A Playcentric
Approach to Creating Innovative Games. Morgan
Kaufmann, New York, U.S.A., second edition, 2008.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
U.S.A., 1994.

Gearbox Software. Borderlands. [Digital game], 2009.
K. Hullett and J. Whitehead. Design Patterns in FPS
Levels. In FDG ’10: Proceedings of the Fifth
International Conference on the Foundations of
Digital Games, pages 7885, New York, NY, USA,
2010. ACM.

Introversion Software. Darwinia. [Digital game],
March 2005.

A. Kerr. The Business and Culture of Digital Games:
Gamework and Gameplay. SAGE Publications, 2006.
R. Khaled, M. J. Nelson, and P. Barr. Design
Metaphors for Procedural Content Generation in
Games. In Proceedings of the 2013 ACM SIGCHI
Conference on Human Factors in Computing Systems,
2013.

(22]

23]

[24]
[25]
[26]

27]
28]
29]

(30]

(31]

32]

(33]

(34]

(35]

(36]

37]

(38]

C. Lewis, N. Wardrip-Fruin, and J. Whitehead.
Motivational game design patterns of ’ville games. In
Proceedings of the International Conference on the
Foundations of Digital Games, FDG ’12, pages
172-179, New York, NY, USA, 2012. ACM.

P. Mawhorter and M. Mateas. Procedural Level
Generation Using Occupancy-Regulated Extension. In
Proceedings of the IEEE Conference on Computational
Intelligence in Games (CIG), 2010.

MicroProse. Civilization. [Digital game], 1991.
Mojang. Minecraft. [Digital game], May 2009.

N. Montfort and 1. Bogost. Racing the Beam: The
Atari Video Computer System. Platform Studies. MIT
Press, 2009.

Nintendo. Super Mario Bros. [Digital game], 1985.
Re-Logic. Terraria. [Digital game], 2011.

A. M. Smith and M. Mateas. Answer Set
Programming for Procedural Content Generation: A
Design Space Approach. IEEE Trans. Comput.
Intellig. and AI in Games, 3(3):187-200, 2011.

G. Smith, R. Anderson, B. Kopleck, Z. Lindblad,

L. Scott, A. Wardell, J. Whitehead, and M. Mateas.
Situating quests: design patterns for quest and level
design in role-playing games. In Proceedings of the 4th
international conference on Interactive Digital
Storytelling, ICIDS’11, pages 326-329, Berlin,
Heidelberg, 2011. Springer-Verlag.

G. Smith, M. Cha, and J. Whitehead. A Framework
for Analysis of 2D Platformer Levels. In Sandboz ’08:
Proceedings of the 2008 ACM SIGGRAPH symposium
on Video games, pages 75-80, New York, NY, USA,
2008. ACM.

G. Smith, J. Whitehead, and M. Mateas. Tanagra:
Reactive Planning and Constraint Solving for
Mixed-Initiative Level Design. IEEE Transactions on
Computational Intelligence and Al in Games,
3(3):201-215, 2011.

Spectrum Strategy Consultants. From exuberant
youth to sustainable maturity - Competitiveness
analysis of the UK games software sector. Consultant
report, DTI - Department of Trade and Industry,
U.K., 2002.

F. Spufford. Backroom Boys — The Secret Return of
the British Boffin. Faber and Faber Limited, Croydon,
U.K., 2003.

Subset Games. FTL: Faster Than Light. [Digital
game|, September 2012.

J. Togelius, S. Karakovskiy, and R. Baumgarten. The
2009 Mario Al Competition. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC),
2010.

J. Togelius, M. Preuss, N. Beume, S. Wessing,

J. Hagelbick, and G. N. Yannakakis. Multiobjective
Exploration of the StarCraft map space. In G. N.
Yannakakis and J. Togelius, editors, CIG, pages
265—272. IEEE, 2010.

J. Togelius, G. N. Yannakakis, K. O. Stanley, and

C. Browne. Search-based procedural content
generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and
Games, 3:172-186, 2011.

