Malmö University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Olsson, Pär
    et al.
    Malmö högskola, School of Technology (TS).
    Massih, Ali
    Malmö högskola, School of Technology (TS).
    Blomqvist, Jakob
    Malmö högskola, School of Technology (TS).
    Alvarez Holston, Anna-Maria
    Bjerkén, Christina
    Malmö högskola, School of Technology (TS).
    Ab initio thermodynamics of zirconium hydrides and deuterides2014In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 86, p. 211-222Article in journal (Refereed)
    Abstract [en]

    We report the results of a systematic ab initio study of the elastic and thermodynamic properties of γ-ZrH, δ-View the MathML source-ZrD, and δ-ZrD1.5. In addition, pure α-Zr as well as the ε-ZrH2 and ε-ZrD2 phases are evaluated for reference. The calculations are performed using quantum mechanical density functional theory (DFT) with the frozen core projector augmented wave (PAW) approach and a generalised gradient approximated (GGA) exchange–correlation functional. To capture the variations of the thermodynamic quantities over a wide range of temperatures View the MathML source, the quasi-harmonic approximation approach is adopted where the influence of the vibrational and electronic free energies are included by means of the phonon and electron densities of state. This allows for quantifying the contributions of the electron density of states, which were not accounted for in the previous studies. All the pertinent elastic constants and phonon properties for the considered hydride/deuteride phases are calculated and compared with experimental data; which were not done before. We have further computed the entropy, heat capacity and enthalpy as well as low temperature thermodynamic properties such as the Debye temperature and the electronic heat capacity constant for all the hydride and deuteride phases. The results of our computations concur well with the corresponding data obtained by measurements that are reported in the literature and offer the necessary data and basis for multiscale modelling of zirconium alloys.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf