Malmö University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Froese Fischer, Charlotte
    et al.
    Godefroid, Michel
    Verdebout, Simon
    Gaigalas, Gediminas
    Jönsson, Per
    Malmö högskola, School of Technology (TS).
    Configuration interaction with separately optimized pair correlation functions2010Conference paper (Other academic)
    Abstract [en]

    Variational methods produce one-electron radial functions that minimize the total energy of the system. Independent pair correlation functions (PCFs) designed to represent a specific correlation effect – valence, core-valence, or core-core – can be obtained from multiconfiguration Hartree-Fock (MCHF) or Dirac-Hartree-Fock (MCDHF) calculations [1,2]. These separately optimized and nonorthogonal PCFs may then be coupled by solving the associated generalized eigenproblem. In the present study, the Hamiltonian and overlap matrix elements are evaluated through biorthonormal orbital transformations and efficient counter-transformation of the configuration interaction eigenvectors [3]. The ground state of Be atom has been thoroughly tested by this method for various computational strategies and correlation models. It has been shown that the energy convergence is faster than with the usual SD-MCHF method of optimizing a single, orthonormal, one-electron orbital basis spanning the complete configuration space. Beryllium is a small system for which basis saturation can be achieved through complete active space MCHF expansions. But for larger systems describing electron correlation in all space by optimizing a common orthonormal set becomes hopeless whereas the calculation of additional PCFs is straight forward. Our independent optimization scheme, raises many questions related in the choice of the zero-order model to be used when building the interaction matrix. The present study is the first step in the current development of the extension of the atsp2K and grasp2K packages [1,2] that will adopt the biorthonormal treatment for energies, isotope shifts, hyperfine structures and transition probabilities.

    Download full text (pdf)
    FULLTEXT01
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf